Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
1.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542295

RESUMO

Hedgehog (Hh) signaling is crucial in cardiovascular development and maintenance. However, the biological role of Patched1 (Ptch1), an inhibitory receptor of the Hh signaling pathway, remains elusive. In this study, a Ptch1 ortholog was characterized in Nile tilapia (Oreochromis niloticus), and its function was investigated through CRISPR/Cas9 gene knockout. When one-cell embryos were injected with CRISPR/Cas9 targeting ptch1, the mutation efficiency exceeded 70%. During 0-3 days post fertilization (dpf), no significant differences were observed between the ptch1 mutant group and the control group; at 4 dpf (0 day after hatching), about 10% of the larvae showed an angiogenesis defect and absence of blood flow; from 5 dpf, most larvae exhibited an elongated heart, large pericardial cavity, and blood leakage and coagulation, ultimately dying during the 6-8 dpf period due to the lack of blood circulation. Consistently, multiple differentially expressed genes related to angiogenesis, blood coagulation, and heart development were enriched in the ptch1 mutants. Furthermore, Smoothened (Smo) antagonist (cyclopamine) treatment of the ptch1 mutants greatly rescued the cardiovascular disorders. Collectively, our study suggests that Ptch1 is required for cardiovascular development and vascular integrity via Smo signaling, and excessive Hh signaling is detrimental to cardiovascular development.


Assuntos
Ciclídeos , Animais , Ciclídeos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Técnicas de Inativação de Genes , Mutação , Receptor Smoothened/genética
3.
Biochim Biophys Acta Gen Subj ; 1868(4): 130557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181892

RESUMO

BACKGROUND: HERC4 has been reported to have functions in several types of tumors, but its roles in ovarian cancer have not been studied yet. METHODS: Primary tissues from ovarian cancer patients and cell lines were collected for real-time PCR. Kaplan-Meier Plotter was used to predict the prognosis of ovarian cancer patients. HERC4 was overexpressed in cells by lentivirus, and CCK-8 assay was performed to evaluate cell viability. Real-time PCR and Western blot were carried out to analyze the mRNA and protein expression, respectively. Xenograft tumor models were established to analyze HERC4 function in vivo. RESULTS: Firstly, we found that HERC4 was significantly downregulated in ovarian cancer. We then found that ovarian cancer patients with high HERC4 expression had significantly higher overall survival and progression-free survival rates compared with patients with low expression. Then, HERC4 was overexpressed in ovarian cancer cells, and we found that overexpression of HERC4 significantly inhibited ovarian cancer cell growth, as well as the expression of the target protein SMO, and the key proteins in the downstream hedgehog signaling pathway. Finally, the xenograft tumor models revealed that overexpression of HERC4 significantly inhibited tumor growth in vivo. CONCLUSIONS: Overall, these results indicate that overexpression of HERC4 inhibits cell proliferation of ovarian cancer in vitro and in vivo, suggesting that HERC4 may serve as an effective target for the treatment of ovarian cancer.


Assuntos
Proteínas Hedgehog , Neoplasias Ovarianas , Humanos , Feminino , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Ovarianas/genética , Proliferação de Células , Receptor Smoothened/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(49): e2300919120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015850

RESUMO

Smoothened (SMO) is an oncoprotein and signal transducer in the Hedgehog signaling pathway that regulates cellular differentiation and embryogenesis. As a member of the Frizzled (Class F) family of G protein-coupled receptors (GPCRs), SMO biochemically and functionally interacts with Gi family proteins. However, key molecular features of fully activated, G protein-coupled SMO remain elusive. We present the atomistic structure of activated human SMO complexed with the heterotrimeric Gi protein and two sterol ligands, equilibrated at 310 K in a full lipid bilayer at physiological salt concentration and pH. In contrast to previous experimental structures, our equilibrated SMO complex exhibits complete breaking of the pi-cation interaction between R4516.32 and W5357.55, a hallmark of Class F receptor activation. The Gi protein couples to SMO at seven strong anchor points similar to those in Class A GPCRs: intracellular loop 1, intracellular loop 2, transmembrane helix 6, and helix 8. On the path to full activation, we find that the extracellular cysteine-rich domain (CRD) undergoes a dramatic tilt, following a trajectory suggested by positions of the CRD in active and inactive experimental SMO structures. Strikingly, a sterol ligand bound to a shallow transmembrane domain (TMD) site in the initial structure migrates to a deep TMD pocket found exclusively in activator-bound SMO complexes. Thus, our results indicate that SMO interacts with Gi prior to full activation to break the molecular lock, form anchors with Gi subunits, tilt the CRD, and facilitate migration of a sterol ligand in the TMD to an activated position.


Assuntos
Proteínas Hedgehog , Esteróis , Humanos , Esteróis/metabolismo , Ligantes , Modelos Moleculares , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/metabolismo
5.
Sci Signal ; 16(807): eadd6834, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847757

RESUMO

Hedgehog (Hh) signaling controls growth and patterning during embryonic development and homeostasis in adult tissues. Hh binding to the receptor Patched (Ptc) elicits intracellular signaling by relieving Ptc-mediated inhibition of the transmembrane protein Smoothened (Smo). We uncovered a role for the lipid phosphatidic acid (PA) in the regulation of the Hh pathway in Drosophila melanogaster. Deleting the Ptc C-terminal tail or mutating the predicted PA-binding sites within it prevented Ptc from inhibiting Smo in wing discs and in cultured cells. The C-terminal tail of Ptc directly interacted with PA in vitro, an association that was reduced by Hh, and increased the amount of PA at the plasma membrane in cultured cells. Smo also interacted with PA in vitro through a binding pocket located in the transmembrane region, and mutating residues in this pocket reduced Smo activity in vivo and in cells. By genetically manipulating PA amounts in vivo or treating cultured cells with PA, we demonstrated that PA promoted Smo activation. Our findings suggest that Ptc may sequester PA in the absence of Hh and release it in the presence of Hh, thereby increasing the amount of PA that is locally available to promote Smo activation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
6.
Oncogene ; 42(47): 3529-3541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845394

RESUMO

TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.


Assuntos
Antineoplásicos , Osteossarcoma , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Ligantes , Transdução de Sinais , Antineoplásicos/farmacologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Cílios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830570

RESUMO

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Assuntos
Cílios , Glioma , Humanos , Cílios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Receptor Smoothened/metabolismo
8.
BMC Pediatr ; 23(1): 424, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626311

RESUMO

BACKGROUND: Congenital tibial hemimelia (CTH [MIM: 275220]) is a rare congenital limb deficiency that manifests as a shortened, curved, dysplastic or absent tibia with polydactyly. In previous studies, mutations of a distant sonic hedgehog (SHH) cis-regulator (ZRS) and a Shh repressor (GLI3) were identified. CASE PRESENTATION: Here, we admitted a 20-month-old boy who manifested with right tibial deformity, varus foot, ankle dislocation, and ipsilateral preaxial polydactyly. After genetic sequencing and data analysis, the results revealed a 443 A > G mutation in the father and a 536 C > T mutation in the mother in exon 2 of the Smoothed (SMO) gene at 7q32.1, with the coexistence of both mutant alleles in the proband/patient. CONCLUSIONS: Our report suggests that even though not previously reported, SMO mutations may be associated with limb anomalies such as tibial hemimelia via Hh signaling in humans and has implications for genetic counseling.


Assuntos
Proteínas Hedgehog , Polidactilia , Masculino , Humanos , Lactente , Proteínas Hedgehog/genética , Mutação Puntual , Tíbia/diagnóstico por imagem , Polidactilia/genética , Receptor Smoothened
9.
Chemistry ; 29(62): e202302237, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565343

RESUMO

Natural products (NPs) are highly profitable pharmacological tools due to their chemical diversity and ability to modulate biological systems. Accessing new chemical entities while retaining the biological relevance of natural chemotypes is a fundamental goal in the design of novel bioactive compounds. Notably, NPs have played a crucial role in understanding Hedgehog (HH) signalling and its pharmacological modulation in anticancer therapy. However, HH antagonists developed so far have shown several limitations, thus growing interest in the design of second-generation HH inhibitors. Through smart manipulation of the NPs core-scaffold, unprecedented and intriguing architectures have been achieved following different design strategies. This study reports the rational design and synthesis of a first and second generation of anthraquinone-based hybrids by combining the rhein scaffold with variously substituted piperazine nuclei that are structurally similar to the active portion of known SMO antagonists, the main transducer of the HH pathway. A thorough functional and biological investigation identified RH2_2 and RH2_6 rhein-based hybrids as valuable candidates for HH inhibition through SMO antagonism, with the consequent suppression of HH-dependent tumour growth. These findings also corroborated the successful application of the NPs-based hybrid design strategy in the development of novel NP-based SMO antagonists.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor Smoothened/uso terapêutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antraquinonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
10.
Biomed Res Int ; 2023: 6575194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139482

RESUMO

Background: To investigate the value of SMO and GLI1 genes in the hedgehog pathway in malignant mesothelioma specimens. Further study on the expression and prognosis of SMO and GLI1 in malignant mesothelioma tissues and the relationship between the two and the molecular mechanisms of mesothelioma immunity and to further investigate the prognostic value of mesothelioma expression. Materials and Methods: Immunohistochemistry and RT-qPCR were applied to detect the expression of SMO and GLI1 proteins and mRNA in biopsy specimens and plasma cavity effusion specimens from malignant mesothelioma (n = 130) and benign mesothelial tissues (n = 50) and to analyze the clinicopathological significance and survival risk factors of SMO and GLI1 protein expression in mesothelioma. The mechanisms of mesothelioma cell expression and immune cell infiltration were investigated using bioinformatics methods. Results: SMO and GLI1 in mesothelioma tissues detected high concordance between the diagnostic results of mesothelioma biopsy specimens and plasma cavity effusion specimens. The expression levels of SMO and GLI1 protein and mRNA in mesothelioma tissues were higher than those in benign mesothelioma tissues. The expression levels of SMO and GLI1 protein were correlated with the age, site, and asbestos exposure history of patients with mesothelioma. The expression levels of SMO and GLI1 protein were correlated with the expressions of ki67 and p53 (P < 0.05). SMO and GLI1 gene expression levels were negatively correlated with good prognosis in mesothelioma patients (P < 0.05). Cox proportional risk model indicated that protein expressions of invasion, lymph node metastasis, distant metastasis, staging, and genes were independent prognostic factors of mesothelioma. The GEPIA database showed the overall survival rate and the disease-free survival rate of mesothelioma patients in the high SMO and GLI1 expression groups; the UALCAN database analysis showed lower SMO expression levels in mesothelioma patients with more pronounced TP53 mutations (P = 0.001); GLI1 gene expression levels were strongly correlated with lymph node metastasis in mesothelioma patients (P = 0.009). Timer database analysis showed that the mechanism of immune cell infiltration was closely related to SMO and GLI1 expression. The degree of immune cell infiltration was strongly correlated with the prognosis of mesothelioma patients (P < 0.05). Conclusion: The expression levels of both SMO and GLI1 proteins were higher than those of normal mesothelial tissues, and the mRNA expression levels also changed in the same direction. SMO and GLI1 gene expressions in mesothelioma were negatively correlated with age, site of occurrence, and history of asbestos exposure. Positive expression of SMO and GLI1 was negatively correlated with patient survival. The Cox proportional risk model showed that gender, history of asbestos exposure, site of occurrence, SMO, and GLI1 were independent prognostic factors for mesothelioma. The mechanism of immune cell infiltration in mesothelioma is closely related to the gene expression of both and the survival prognosis of mesothelioma patients.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Metástase Linfática , Transdução de Sinais , Proteínas Hedgehog/genética , Mesotelioma/genética , Mesotelioma/patologia , Prognóstico , RNA Mensageiro/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptor Smoothened/genética
11.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240278

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the deadliest neoplasm of the urinary tract, and we are still far from completely understanding ccRCC development and treatment. The renal tissue paraffin blocks (20) of patients with ccRCC were collected at the University Hospital in Split from 2019 to 2020, and tissue sections were stained with patched (PTCH), anti-smoothened (SMO) and anti-Sonic Hedgehog (SHH) antibodies. SHH was highly expressed (31.9%) in grade 1 tumour, it being higher than all other grades and the control (p < 0.001-p < 0.0001). The trend of a linear decrease in the expression of SHH was observed with the progression of the tumour grade (p < 0.0001). PTCH expression was significantly lower in grades 1 and 2 in comparison to the control (p < 0.01) and grade 4 (p < 0.0001). A significant increase in the expression of SMO was found in grade 4 compared to all other grades (p < 0.0001) and the control (p < 0.001). The strong expression of SHH was observed in carcinoma cells of the G1 stage with a diffuse staining pattern (>50% of neoplastic cells). Stroma and/or inflammatory infiltrate display no staining and no expression of SHH in G1 and G2, while mild focal staining (10-50% of neoplastic cells) was observed in G3 and G4. Patients with high PTCH and low SMO expression had significant time survival differences (p = 0.0005 and p = 0.029, respectively). Therefore, high levels of PTCH and low levels of SMO expression are important markers of better survival rates in ccRCC patients.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Carcinoma de Células Renais/genética , Receptores Patched/metabolismo , Transdução de Sinais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Renais/genética , Receptor Smoothened/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
J Mol Model ; 29(5): 143, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062794

RESUMO

CONTEXT: The Hedgehog (Hh) signaling pathway is a crucial regulator of various cellular processes. Dysregulated activation of the Smoothened (SMO) oncoprotein, a key component of the Hh pathway, has been implicated in several types of cancer. Although SMO inhibitors are important anti-cancer therapeutics, drug-resistant SMO mutants have emerged, limiting their efficacy. This study aimed to discover stable SMO inhibitors for both wild-type and mutant SMOs, using a 12-feature pharmacophore model validated for virtual screening. One lead compound, LCT10312, was identified with high affinity to SMO and showed a significant conformational change in the SMO structure upon binding. Molecular dynamic simulation revealed stable interaction of LCT10312 with SMO and large atom motions, indicating SMO structural fluctuation. The lead compound showed high predicted binding scores to several clinically relevant SMO mutants. METHODS: A ligand-based pharmacophore model was developed from 25 structurally clustered SMO inhibitors using LigandScout v3.12 software and virtually screened for hit identification from a library of 511,878 chemicals. Molecular docking was employed to identify potential leads based on SMO affinities. Molecular dynamic simulation (MDS) with GROMACS v5.1.4 was performed to analyze the structural changes of SMO oncoprotein upon binding lead compound(s) and cyclopamine as the control for 100 ns. The binding affinity of lead compound(s) was predicted on clinical and laboratory SMO mutants.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Proteínas Hedgehog/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Farmacóforo , Receptor Smoothened/metabolismo
13.
J Control Release ; 357: 94-108, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931470

RESUMO

Cancer stem cells (CSCs) possess the ability to indefinitely proliferate and resist therapy, leading to cancer relapse and metastasis. To address this, we aimed to develop a CSC-inclusive therapy that targets both CSCs and non-CSC glioblastoma (GBM) cells. We accomplished this by using a smoothened (SMO) CRISPR/Cas9 plasmid to suppress the hedgehog pathway in CSCs, in combination with inhibiting the serine hydroxymethyl transferase 1 (SHMT1)-driven thymidylate biosynthesis pathway in non-CSC GBM cells using SHMT1 siRNA (siSHMT1). We targeted CSCs using a CD133 peptide attached to an osmotically active vitamin B6-coupled polydixylitol vector (VPX-CD133) by a photoactivatable heterobifunctional linker. VPX-CD133 nanocomplexes in comparison to VPX complexes remarkably targeted and transfected CSCs both in vitro and in subcutaneous tumor. The VPX-CD133-mediated targeted delivery of SMO CRISPR in CSCs led to SMO suppression that negatively affected its growth. Next, we performed comprehensive therapy in xenograft mice using VPX-CD133, which delivered SMO-CRISPR to CSCs, and VPX, which delivered siSHMT1 to non-CSC GBM cells. The combined treatment induced apoptosis in a large number of cells, reduced tumor volume by up to 81%, and improved the health of treated mice significantly. By eliminating CSCs together with the non-CSC GBM cells, the combined study paves the way for developing CSC-inclusive therapies for GBM.


Assuntos
Glioblastoma , Proteínas Hedgehog , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Interferente Pequeno/metabolismo , Apoptose , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Antígeno AC133 , Receptor Smoothened/metabolismo
14.
Biophys J ; 122(7): 1400-1413, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883002

RESUMO

Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 µs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptor Smoothened/química , Receptor Smoothened/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo
15.
Mol Cancer Ther ; 22(3): 343-356, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36807728

RESUMO

Cholangiocarcinoma (CCA) is characterized by resistance to chemotherapy and a poor prognosis. Therefore, treatments that can effectively suppress tumor growth are urgently needed. Aberrant activation of hedgehog (HH) signaling has been implicated in several cancers, including those of the hepatobiliary tract. However, the role of HH signaling in intrahepatic CCA (iCCA) has not been completely elucidated. In this study, we addressed the function of the main transducer Smoothened (SMO) and the transcription factors (TFs) GLI1 and GLI2 in iCCA. In addition, we evaluated the potential benefits of the combined inhibition of SMO and the DNA damage kinase WEE1. Transcriptomic analysis of 152 human iCCA samples showed increased expression of GLI1, GLI2, and Patched 1 (PTCH1) in tumor tissues compared with nontumor tissues. Genetic silencing of SMO, GLI1, and GLI2 inhibited the growth, survival, invasiveness, and self-renewal of iCCA cells. Pharmacologic inhibition of SMO reduced iCCA growth and viability in vitro, by inducing double-strand break DNA damage, leading to mitotic arrest and apoptotic cell death. Importantly, SMO inhibition resulted in the activation of the G2-M checkpoint and DNA damage kinase WEE1, increasing the vulnerability to WEE1 inhibition. Hence, the combination of MRT-92 with the WEE1 inhibitor AZD-1775 showed increased antitumor activity in vitro and in iCCA xenografts compared with single treatments. These data indicate that combined inhibition of SMO and WEE1 reduces tumor burden and may represent a strategy for the clinical development of novel therapeutic approaches in iCCA.


Assuntos
Colangiocarcinoma , Proteínas Hedgehog , Humanos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Proteínas Tirosina Quinases/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Histol Histopathol ; 38(11): 1307-1319, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36718820

RESUMO

Circular RNAs (circRNAs) play an important role in cancer development by sponging microRNAs (miRNAs) to regulate the signaling axis. However, more comprehensive mechanisms of circRNAs in glioblastoma need to be elucidated. RT-qPCR was used to detect the expression levels of circRNA-SMO and miR-326. Dual-luciferase reporter assays were conducted to verify the interaction among circRNA-SMO, miR-326, and CEP85. Flow cytometric analysis was performed to detect apoptosis. Western blotting was used to determine the protein levels of the different molecules. Animal xenograft experiments were performed to evaluate the role of circRNA-SMO in vivo. CircRNA-SMO was upregulated in glioblastoma tissues and glioblastoma cells. CircRNA-SMO downregulation inhibited the viability and colony-forming ability of the glioblastoma cells. In addition, miR-326 was downregulated in glioblastoma cells, which was verified to sponge circRNA-SMO and interact with CEP85. Moreover, circRNA-SMO inhibition induced the elevation of miR-326 and apoptosis, accompanied by a decrease in CEP85. CircRNA-SMO knockdown-mediated tumor inhibition was prevented by an miR-326 inhibitor. Furthermore, circRNA-SMO inhibition inhibited tumor growth in vivo, accompanied by an increase in miR-326 and a decline in CEP85 in tumor tissues. Conclusions. CircRNA-SMO sponges miR-326 to promote glioblastoma proliferation and migration by upregulating CEP85 expression. This study clarified the role of circRNA-SMO in the development of glioblastoma, providing novel insights for its treatment.


Assuntos
Glioblastoma , MicroRNAs , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Receptor Smoothened
17.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674836

RESUMO

Hedgehog-GLI (HH) signaling plays an essential role in embryogenesis and tissue homeostasis. Aberrant activation of the pathway through mutations or other mechanisms is involved in the development and progression of numerous types of cancer, including basal cell carcinoma, medulloblastoma, melanoma, breast, prostate, hepatocellular and pancreatic carcinomas. Activation of HH signaling sustains proliferation, suppresses cell death signals, enhances invasion and metastasis, deregulates cellular metabolism and promotes angiogenesis and tumor inflammation. Targeted inhibition of the HH pathway has therefore emerged as an attractive therapeutic strategy for the treatment of a wide range of cancers. Currently, the Smoothened (SMO) receptor and the downstream GLI transcriptional factors have been investigated for the development of targeted drugs. Recent studies have revealed that the HH signaling is also involved in tumor immune evasion and poor responses to cancer immunotherapy. Here we focus on the effects of HH signaling on the major cellular components of the adaptive and innate immune systems, and we present recent discoveries elucidating how the immunosuppressive function of the HH pathway is engaged by cancer cells to prevent immune surveillance. In addition, we discuss the future prospect of therapeutic options combining the HH pathway and immune checkpoint inhibitors.


Assuntos
Carcinoma Basocelular , Neoplasias Cerebelares , Neoplasias Cutâneas , Masculino , Humanos , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Carcinoma Basocelular/patologia , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
18.
Biochem Biophys Res Commun ; 638: 23-27, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436338

RESUMO

Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and the effectiveness of current therapies for them is limited. TNBC lacks effective therapies and HER2-positive cancer is often resistant to HER2-targeted drugs after an initial response. The recent studies have demonstrated that the combination of JAK2 inhibitors and SMO inhibitors can effectively inhibit the growth and metastasis of TNBC and HER2-positive drug resistant breast cancer cells. In this study, deep reinforcement learning was used to learn the characteristics of existing small molecule inhibitors of JAK2 and SMO, and to generate a novel library of small molecule compounds that may be able to inhibit both JAK2 and SMO. Subsequently, the molecule library was screened by molecular docking and a total of 7 compounds were selected out as dual inhibitors of JAK2 and SMO. Molecular dynamics simulations and binding free energies showed that the top three compounds stably bound to both JAK2 and SMO proteins. The binding free energies and hydrogen bond occupancy of key amino acids indicate that A8976 and A10625 has good properties and could be a potential dual-target inhibitor of JAK2 and SMO.


Assuntos
Inibidores de Janus Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas/patologia , Receptor Smoothened , Janus Quinase 2/metabolismo
19.
EMBO J ; 42(3): e111513, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524353

RESUMO

Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.


Assuntos
Cálcio , Proteínas Hedgehog , Transporte Biológico , Cálcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de Membrana/metabolismo
20.
PLoS One ; 17(12): e0266433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580465

RESUMO

Dysfunction of the primary cilium, a microtubule-based signaling organelle, leads to genetic conditions called ciliopathies. Hedgehog (Hh) signaling is mediated by the primary cilium in vertebrates and is therefore implicated in ciliopathies; however, it is not clear which immortal cell lines are the most appropriate for modeling pathway response in human disease; therefore, we systematically evaluated Hh in five commercially available, immortal mammalian cell lines: ARPE-19, HEK293T, hTERT RPE-1, NIH/3T3, and SH-SY5Y. Under proper conditions, all of the cell lines ciliated adequately for our subsequent experiments, except for SH-SY5Y which were excluded from further analysis. hTERT RPE-1 and NIH/3T3 cells relocalized Hh pathway components Smoothened (SMO) and GPR161 and upregulated Hh target genes in response to pathway stimulation. In contrast, pathway stimulation did not induce target gene expression in ARPE-19 and HEK293T cells, despite SMO and GPR161 relocalization. These data indicate that human hTERT RPE-1 cells and murine NIH/3T3 cells, but not ARPE-19 and HEK293T cells, are suitable for modeling the role of Hh signaling in ciliopathies.


Assuntos
Proteínas Hedgehog , Neuroblastoma , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Cílios/metabolismo , Células HEK293 , Neuroblastoma/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...